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SIMILAR BOUNDARY LAYER SOLUTIONS FOR COMBINED FORCED AND FREE CORVECTION

ABSﬁACT

Consideration is given to the combined forced and free convection flow and heat
transfer about a nonisothermal body subjected to a nonuniform free stream velocity.
Similar solutions for the laminar boundary layer equations are found to exist when
the free stream velocity and surface temperature vary respectively as x° and xam"l.
The parameter controlling the relative importance of the free and forced convection is
Gr/Rez. A flow separation phenomenon may occur when the forced and free convection
act in opposite directions.

Extensive numerical solutions of the transformed boundary layer equations have
been carried out for the cases of uniform wall temperature and uniform wall heat flux
for a Prandtl number of 0.7 (gases) over a wide range of values of Gr/Rez. Results
are reported for the heat transfer, shear stress, and velocity and temperature fields.
Criteria are given for cataloguing flows as purely forced, purely free, and mixed.

INTRODUCTION

The requirements of modern technology have stimulated interest in fluid flows
which involve the interaction of several phenomena. Attention is directed here to the
situation where forced and free convection act simultaneously in establishing the flow
and temperature fields adjacent to a heated or cooled body. In approaching such a
problem, a natural first step is the study of similar solutions, which constitute a
set of exact solutions of the laminar boundary layer eguations. Although similar
solutions for the separate forced and free convection boundary layers may be found

1
in the literature »2

, these fundamental sclutions have yet to be given for the combined
flow. The finding of such solutions constitutes the goal of this investigation.
Our motivation for seeking similar solutions is three-fold. First, the results

may be directly usable in important technical applications. Further, the similar

solutions provide a standard 61’ comparison against which approximate procedures may

1. V. M. Falkner and S. W. Skan, Phil. Mag., 12, 865.

2. E. M. Sparrow and J. L. Gregg, Trans. A.S.M.E., Vol. 80, 1958, 379.
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be checked; once verified, the approximate methods may then be used in studying more
complex flow situations where the conditions of similarity are not satisfied. Finally,
the general trends may provide valuable insight in understanding the physical occur-
rences which take place in such combined flows.

Previous boundary layer studies 5,4 for combined forced and free convection have
been confined to the isothermal vertical plate aligned parallel to a uniform free
stream. These conditions do not lead to similar-type solutions. As a consequence,
this problem has been studied only in an incomplete way, the published anelyses taking
the form of a perturbation of the pure forced convection solution. ¥Flow in tubes and
ducts under conditions of combined forced and free convection has been studied by
several investigators, but their work is not of direct interest to us here and further
details need not be given.

ANALYSIS
General Considerations

The general problem of boundary layer flow and heat transfer will include a free
stream pressure gradient and a nonisothermal surface. Previous studies have revealed
similar solutions for the purely forced convection case when the free stream velocity
varles according to the following power law

U, = AX® (2)
where x measures the distance from the leading edge. For purely free convection
flows with uniform free stream temperature T_, similar solutions have been obtained
for wall temperature variastions of the type

T, - T, = Bx" (2)
Thus it would appear natural that we should begin our quest for similar solutions by
simultaneously imposing power function variations for both the free stream velocity

and wall temperature.

3. A. A. Tanaev, Jour. Tech. Physics (U.S.S.R.), Translated by Amer. Inst. of Physics,
Vol. 1, No. 11, p. 2477, 1956.

4. E. M. Sparrow and J. L. Gregg, to be published in J. Appl. Mech.
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For the sake of concreteness, we display in Figure 1 several possible physical
models of the mathematical analysis. Sketches (a) and (b) show the wedge configura-
tion commonly associated with the free stream velocity of Equation (1), while sketch
(c¢) suggests an alternate way of achieving this velocity through the contouring of
a channel weall. The same analysis covers all the situations depicted in Figure 1.

We will designate as aiding flows those flows for which the buoyancy force has

a positive component in the direction of the free stream veloecity. Those flows for
which the buoyancy force has a component opposite to the free stream velocity will be

designated as opposing flows. For the gravity orientation shown in Figure 1, the

aiding case will require T, - T,> O (B >0) and the opposed case will require

T, - T, <0 (B < 0). If the lower half of the wedge in Figure 1(b) is considered,
or if the direction of the gravity field is reversed in the other two cases, the cri-
teria will be interchanged. Although the analysis and results are given with the
orientation of Figure 1 in mind, they may be extended without essential modification
to the reversed orientations.

The analysis is made for laminar, steady flow. Viscous dissipation is disregarded
in consideration of the relatively small velocities usually encountered in free con-
vection. Fluid property variations other than essential density variations are also
neglected.

The Conservation Equations

The velocity and thermal fields are governed by the basic conservation laws:
mass, momentum, and energy; and it is these which constitute the starting point of our
study. The boundary layer form of these equations for steady, nondissipative, constant

property flow is

%—;+%’=0 (3)

p(u%u+v%>=-%—x2-pgx+u'a? (4)
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d . _ax  x 3%
u&+v§§=5—é;-a_y..2- (5)

wvhere u and v are the velocity components in the x and y directions; T, the
static temperature; g, the magnitude of the gravity force in the negative x direc-
tion; and k, p, Cps and u, the thermal conductivity, density, specific heat, and
absolute viscosity, respectively.

The conservation of mass equation (3) may be immediately satisfied by the usual
stream function V¥, i.e.,

w=F, v (6)

Then turning to equation (4), we recall that according to boundary layer theory,

*
the pressure changes across the layer may be neglected; and as a consegquence, dp/ dx
can be evaluated from the free stream flow. For the free stream, where the viscosity

plays no role, the momentum equation is

& dU,,

£+pwnmd_x +png=0 (7)
From this, we find an expression for dp/dx, which may in turn be substituted into

the boundary layer momentum equation (4) s giving

au, 2
p(u%u+v%>=pwUm-d;—+gx(pw-p)+u—§—y% (4a)

The density difference (pm - p) is essential to the free convection motion and must
be retained, but other density differences may be ignored within the framework of the
constant property assumption. Following classical freé convection theory, we rewrite
the buoyancy term as

gx(p_ - p) = gyBo(T - T)

where B 1is the coefficient of thermal expansion. With this equation (4a) becomes

du, 2
ug_.;...v%.—_uma-x:+gxs('r-Tm)+v%;% (4p)

where v (= p/p) represents the kinematic viscosity.

*In the present instance, the transverse pressure gradient can be neglected pro-

vided that 8y is of the same or lower order than g,.

|
i
|
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A further rephrasing of the momentum equation (4b) and energy equation (5) may
be made by replacing the velocity components u and v in favor of the stream func-

tion V¥ in accordance with (6). The result of this substitution is

2 2 du ®
Y -%gy%”’maf“'gxﬁm“““)”%yg *

N I _ x
3 Ox T 3x 3y T pey o2 (¢)

The formidable mathematical task posed by this pair of simultaneous partial differen-
tial equations is a strong motivation to seek a similarity transformation which leads
to ordinary differential equations.

The statement of the problem is completed by giving the boundary conditions. At
the solid surface (y = 0), the requirements that u= v = 0 arise respectively from
the conditions of no slip and impermeability. Further, the fluid immediately adjacent
to the wall is required to take on the surface temperature T,- Far from the wall,
the fluid velocity and temperature must asymptotically approach the free stream values
U, and T_. A formal statement of these boundary conditions is

oV _ Y

u = 3; = u = 35 *'qm

oy yoe
v=-S-0} y=o0 T T (10)
T=T,

We now proceed to reduce the partial differential equations (8) and (9) to a
corresponding pair of ordinary differential equations, obtaining as permissible varia-
tions in U, and T_ those given by equations (1) anda (2).

The Trensformed Equations

Guided by previous experience with boundary layer problems, we propose a new in-
dependent variable 1 which includes both the x and y coordinates in the follow-
ing way

n= Clyxw (11a)
where C; and ® are constants as yet undetermined. We are further led by experience

to construct new dependent variables 6 and F as follows
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e(n) = ﬁ;:jf@;, F(n) = E;;X (11v)
where again C2 and A are unspecified. The variable 6 is a dimensionless tem-
perature and F 1is a dimensionless stream function related to the velocities of the
problem. At this point in the analysis, we cannot be certain that 6 and F will
truly be functions of 1 alone, and it is now our aim to find the conditions under
which this is so.
In a purely formal way, we may carry out the transformation of equations (8) and
(9). The end result of these operations is

0
o T gxB(T, - T,)6

ax
) W R gx o Zhe1

2 U,
A+ 0)(F)” - NF = =

ciC c;C
1v2% 1

C
v_l X(D—M’l F (12)
Ca

k C1 o1 "
' - ' = em—
F'e T s AF6 pe, Gy X 6 (13)

where primes denote differentiation with respect to 7. Clearly, F and 0 can be
functions of 1 alone only if the various factors of x are removed from equations

(12) and (13). So, it is found from equation (13) that

w-A+1=0
and
d1n (T, - T)
Tw = = Constant
d In x

The latter condition is a differential equation whose solution is given by Equation 2.
When both conditions are inserted imn Equation (12), and the criterion of independence
from x 1is applied, a differential equation for U, results whose solution is
given by Equation (1).

It further follows that

n=2m-1 (14a)
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and

m-1 _n- 1 £ = m+ 1 _n+t 3 (l4b)

Equation (14a) provides a very interesting result, namely, that the free stream
velocity and surface temperature variations cannot be both selected arbitrarily when
similar solutions are being considered. That there is a constraint tying together the
variations of Tw and U, is not surprising when we realize that the rates of boundary
layer growth associated with the separate forced and free convection flows must be the
same in order to achieve similar solutions for the combined flow. The boundary layer
growth for pure forced convection depends on U;, while in pure free convection the
boundary layer growth depends on Tw - T,. So, in the process of equalizing the
separate boundary layer growth rates, the variations of Tw and U are constrained.
As an example, if consideration is being given to the isothermal wall, i.e., n= 0,
then the free stream velocity must vary as xl/z.

The equations can now be rewritten with the x dependency removed:

g.pB c
O+ o) (@) - am = Am BT (15)
0202 lal C,
172 1¥2
x CO1 ’
nf' 6 - A\FO! = = —= @" (18)
pcp 02

Having determined the exponents ® and A of the transformation equations
(11a) and (11b), there still remains the task of choosing the constants C; and C,.
Actually, there is considerable latitude in making these selections. We will explore
two interesting possibilities here, the first of which will give 7 and F variables
whose definitions coincide with pure forced convection, while the second gives an 7
and F vwhose definitions coincide with pure free convection.

First, let us select CZ/Cl = 2v. This choice will introduce a Prandtl Number
(Pr = ucp/k) into the energy equation and reduce it to the standard form. Next, we
select F'(wo) = constant, say 2. Thus we determine from Equations (1), (6), (11), and

(14b), the quantities
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1/2
1/A 1/2
Cl-—--é(;) R Co = (AV)/ (172)
Then, using Equations (14a), (14b), and (1), we have
1/2
_ly (B
ﬂ—§x<v> (17v)
¥ _ U _141‘_’:-:
F = u=—F', v=3sY—< [WF' - P] (17¢)

2
+/U vx
o0
demonstrating that 17 and F do indeed have their forced convection definitions.
Turning to Equations (15) and (16), we may then evaluate the various constant coef-

ficients. In particular, consider the coefficient of 6 in equation (15).

BxPB
Cicg = constant X
(ng(TW - T)x )
L il v = & (18)
A%/y  xem U2xE Re?
.

where we have used the definitions of Grashof and Reynolds numbers as follows

nglBITW - Twlxs Uox
T = Re = —

2 ? v
v

(19)

and where the absolute value signs cause Gr +to be always positive. As is well-
known, the Grashof number is the controlling parameter for the free convection flow
and the Reynolds number is the controlling parameter for the forced convection flow.
Not only have we been. able to reduce one of the coefficients of Equation (15) to a
ratio of these important parameters, but more important, we have demonstrated that
Gr/Rez is independent of x for similar solutions! We can then rewrite Equations
(15) and (18) as

F" + (m + 1)FF" - 2m(F')% = 6m + 8(Gr/Re®)6 (20)

" + Pr((m + 1)F8' - (4m - 2)F'6] =0 (21)

where Pr is the Prandtl number. The plus-minus signs in the last term of Equation
(20) correspond respectively to aiding and opposing flows (the Grashof number as de-

fined by Equation (19) is always positive).
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With the aid of equations (17c) and (11b), the boundary conditions (10) trans-
form to
F(0) = F'(0) = 0, 6(0) = 1

(22)
Fr -+ 2, & *+0 as L)

So, the mathematical problem is seen to involve three parameters: Gr/ReZ, the
exponent m, and Pr. The magnitude of Gr/ﬁRe2 gives the relative importance of
forced and free convection in determining the combined flow. For small values of
this parameter, forced convection will predominate; while for large values, free
convection will control. From Equation (20), it is clear that for opposing flows,
the term -8(Gr/Re2)9 plays the same role as does the adverse pressure gradient in
the pure forced convection problem. So, it would be expected that with increasing
values of Gr/Reg, a situation of flow separation would reached.

As has already been remarked, the choices of Cl and Cp as given by Equation
(17a) are by no means unique. An alternate interesting selection is obtained by set-
ting Cp/C; = 2v and the quantity 1gX|5|B|/c§c§ = 1. This choice leads to

1/4 1/4
clz{lgxzim] ’ C2=4[fgx:2m]

4v 4v

Upon substitution into the transformation equations (11a) and (11b), it is found
that 1 and F have definitions identical to those for a pure free convection flow.
Further, the coefficients of Equations (15) and (16) may then be evaluated, giving a
pair of equations for 6 and F which depend upon the parameters: Rez/Gr, the
exponent n (or m) and Pr. The parameter Rez/Gr now appears in the boundary con-
ditions as well. We will not pursue these equations here, since solutions were
obtained utilizing Equations (20) and (21).
SOLUTIONS

Inasmuch as analytical solutions of Equations (20) and (21) subject to the

boundary conditions (22) could not be found, it was necessary to use numerical tech-

niques. The numerical method, five point forward integration, requires that at the
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starting point of the calculation, the function and its first two derivatives be
specified for a third order equation; while for a second order equation, the function
and its first derivative must be prescribed. In terms of our present problem, it is
necessary that F(0), F'(0), F"(0), 6(0), and 6'(0) be specified. As is seen from
the boundary conditions (22), the derivatives F"(0) and 6'(0) are not known. So,

the computational problem reduces to a search for the appropriate values of these
derivatives which lead to solutions of Equations (20) and (21) satisfying the condi-
tions F'* 2, 8§ >0 as 1 - w. Detalls of the integration formulas may be found in
a paper by Gregg.5 The actual numeriéal work was done on an IBM 653 electronic digital
computer.

Solutions of Equations (20) and (21) were carried out for a Prandtl number 0.7
(i.e., gases) for the two basic thermal boundary conditions: uniform wall temperature
and uniform wall heat flux. For the former, n=0 and m= 1/2; while for the latter,
n=1/5 and m= 3/5. The parameter Gr/Re® ranged from O to 100 for the aiding flow,
and from O up to the separation value for the opposing flow.

The numerical values of F"(0) and 6'(0) corresponding to these solutions have
been tabulated in the Appendix. The numbers appearing there have been rounded to five
significant figures. As a consequence, they do not fully represent the eight figure
numbers actually used, which served to sétisfy the boundary conditions for large 1y
to 5 or 6 decimal places.

RESULTS
Heat Transfer and Shear Stress

The results which may be of greatest practical interest are the heat transfer and
shear stress characteristics of the problem. Considering first the heat transfer, we
observe that the local rate of heat transfer gq (per unit area) from the surface to

the fluid may be calculated using Fourier's law, i.e.,

SJ. L. Gregg, IBM 650 Scientific Computation Seminar, Endicott, New York, 1957.

Y
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In terms of the variables of Equations (17b) and (11b), the expression for g becomes

(Tw - Tm)Rel/2

q= - = (5n-1)/4

6'(0) ~ x

(23a)

where we have used the definition of Reynolds number from (19). It is customary to
rephrase the heat transfer results in terms of heat transfer coefficients and Nusselt

numbers according to the following definitions

h

i}

Nu

= (24)

—a
Ty - T’
With this, we arrive at the dimensionless heat transfer representation

Fu/Rel/2 = -(%)e'(o) (25)

Since 6'(0) depends upon Gr/Rez, m and Pr, so then does the Nusselt-Reynolds
relationship.

Passing now to the wall shear stress 1T, , we note that

{du -
i “W)yzo (z6)

Defining a friction coefficient c¢p by the relation

T

W
Cp = —te (27)
f

(pUZ/2)
and introducing the variables of the analysis, we find the dimensionless representa-

tion of the shear stress results to be
e Rel/? - (%)F"(O) (28)

The relation between cp and Reynolds number depends upon Gr/ReZ, m, and Pr.
Turning to the numerical results, it may be observed that the values of 6'(0)
and F"(0) tabulated in the Appendix are directly usable in the dimensionless heat
transfer and friction expressions. Our aim is to illustirate general characteristics
by means of plots. Inasmuch as the general trends for the uniform wall temperature

case appear to be repeated for the uniform heat flux case, there appears to be no need
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for detailed consideration of both. So, we will focus primary attention on the re-
sults for uniform wall temperature.

On figure 2, we plot the dimensionless heat transfer and shear stress parameters
of Equations (25) and (28) as a function of Grl/z/Re for the situation of aiding
flows. For small values of the abscissa, the flow is close to pure forced convec-
tion; while for large values of the abscissa, the flow is approaching free convec-
tion. With this in mind, there are included lines representing the results for the
pure forced convection and the pure free convection flows. The equations of these
limiting lines are:

aNu/Rel/? = 1.665

1/2 } Forced convection (29a)
2ceRe 3.599

4Nu/Rel/2 = 1.413(Grl/2/Re)1/2

#*
Free convection (29v)
ZCfRel/z = 3.84O(Grl/2/Re)3/2 }

The interesting feature of this plot is that the heat transfer results for the mixed
flow show a surprisingly small deviation from the envelope formed by the two limiting
lines. In fact, the heat transfer predictions based on the envelope lines would be
in error at most by 23 percent. This somewhat unexpected finding has important prac-
tical implications. For the skin friction results, the maximum deviations from the
envelope curve are much larger. Based on the curves of Figure 2, we will later give
criteria to distinguish when a flow may be considered as purely forced, purely free,
or mixed.

The phrasing of the results as Nusselt-Reynolds and friction factor-Reynolds re-
lations may imply that the problem is being viewed as a basic forced convection flow
on which there is superposed varying amounts of free convection. By recasting the re-
sults in terms of free convection correlation variables, the opposite viewpoint may be

obtained. BSuch a step has been taken on Figure 3, where we plot Nu/Grl/4 and

*1t may be easily verified that U, drops out of the expression for .
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greater free convection effect is reguired to bring about separation for uniform
nheat flux may be explained by noting that the free stream flow exerts a stronger
. positive pressure gradient in this case, i.e., U x0-6 as opposed to U o XO‘S.
The heat transfer and friction factor results for the uniform heat flux (UHF) and
uniform wall temperature (UWT) cases are compared on Figure 5. For aiding flows,

the Nusselt numbers for the two situations are in an almost constant ratio (1.175-

. 1.141) over the entire range of Grl/z/Re. For opposing flows, the variation of the

E~137

Nusselt number ratio is somewhat greater. The friction factor ratio ranges from 1.083
to 0.94 for aiding flows and, as expected, displays a significantly greater variation
for opposing flows.

Velocity and Temperature Profiles

Greater insight into the details of the flow and thermal fields may be obtained
from the velocity and temperature profiles. Again, we deal with only the uniform
wall temperature situation, noting that the same trends appear for uniform heat flux.

The distribution of the velocity across the boundary layer has been plotted on
Figure 6 for a wide range of the parameter Gr/Rez. This series of curves strikingly
displays the role of the free convection in modifying the flow field. As Gr/Re2
ranges from O to 100 under aiding flow conditions, the profiles change from the pure
. forced convection to a shape which is, aside from the tail of the curve, essentially
that of free convection. For opposing flows, as Gr/Re2 ranges from O to 0.95, the
increasingly significant undermining effects of the free convéction are clearly vis-
ible. The shapes of these latter curves are quite similar to those for pure forced
convection flow under an adverse pressure gradient.

Boundary layer temperature distributions are given on Figure 7. All curves dis-
play the same simple shape which is also found in the thermal boundary layers of the
pure forced and pure free convection flows.

Criteria for Pure and Mixed Flows
It is of pfactical interest in the computation of heat transfer and shear stress

to distinguish those conditions under which a given flow may be regarded as pure
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s 3/4

Gr
v 2
P\

correspond to predominantly free convection flows, while large values of the sbscissa

as a function of Re/Grl/z. On this graph, small values of the abscissa

correspond to nearly forced convection flows. The limiting lines corresponding to

pure forced and free convection are also shown, and their equations are given as

follows

mujert/t = 1.43
> Free convection (302)
v -3/4
4TW o] (-]E) Gr = 3.840

/2)1/2

avufert/® = 1.665(Re/crt

[47‘,/0(;%)2](}1-’3/4 = 3-599(39/(}1-1/2)3/4

The general remarks about Figure 2 apply as well to Figure 3.

Forced convection (30b)

So far we have been concerned with aiding flows. Now, we turn to opposing flows.
As has been already notéd, the increasing free convection effects associated with in-
creasing Gr/Re2 should lead to separation. So, it is expected that cp should de-
crease monotonically to zero as GI‘/Re'Z increases. The dimensionless heat transfer
and friction factor results for the opposing flow situstion are plotted in Figure 4
for the isothermal wall case. The friction factor decreases as we have supposed, the
separation point occurring at a value of Gr/Re2 very slightly in excess of 0.95.
But, the interesting point is the relatively minor variation experienced by the dimen-
sionless heat transfer parameter, showing a decline of only 28 percent over the whole
range from pure forced convection (Gr/Re2 = 0) to separation. Again, this finding
may have important practical implications.

Plots depicting the results for the uniform heat flux situation would be essen-
tially the same as Figures 2, 3, and 4, the only differences being in the numerical
values. We now proceed to summarize the numerical differences. First of all, the
separation point for the uniform heat flux case occurs at Gr/Re2 = 1.15, while the

separation value for uniform wall temperature is 0.95. The fact that a relatively
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(either forced or free) from those under vhich it must be regarded as mixed. The im-
portance of this matter stems from the fact that frequently, only results for the pure
flows are availsable.

First we examine the conditions under which the free convection effects may be
neglected in computing the local heat transfer. Our goal is to find a quantitative
criterion for determining when the pure forced convection heat transfer relationship
will yield sufficiently accurate results for the mixed flow case. Suppose it is de-
cided that an accurscy of 5 percent is adequate for the great majority of applications.
Then, using Figure 2, we find that when Gr/Re2 < 0.3, the flow can be regarded as
purely forced as far aé the heat transfer computation is concerned.

Next, we inquire about the conditions under which the free convection heat trans-
fer relationship will yield sufficiently accurate results for the mixed flow situation.
Again supposing that an accuracy of 5 percent is adequate, and using Figure 3, it is
found that the pure free convection results can be used when Gr/IRe2 > 16.

So, in summary, the following subdivisions can be made from the standpoint of the

heat tramnsfer computation.

0 < Gr/Re2 < 0.3 Forced convection (31a)
0.3< GrfRe®< 16  Mixed flow (31b)
16 <1Gr/Re2 Free convection (31c)

These criteria were derived for the case of aiding flows. For opposing flows, we find
that Equation (3la) still applies, but we must now replace (31b) by the relation
0.3< c-r/Re2 Mixed flow (314)

and note that no criterion for purely free convection flow is available since solutionc
were not obtained beyond the separation point.

Just as Equation (31) catalogues the flow type on the basis of heat transfer com-
putations, so too may the flow be catalogued on the basis of shear stress computations.
Again adopting a figure of S percent as representing an acceptable accuracy, the flow

subdivisions from the standpoint of the shear stress are found to be



- 17 -

APPENDIX

TABULATION OF F"(0) AND 6'(0) VALUES

E-137

(a) Aiding flows.

Gr/Re® UWT UHF
F"(0) -6'(0) ' (0) -6'(0)
100 122.59 2.2698 | 116.02 2.5882
50 73.449 1.9251 69.589 2.1952
20 37.733 1.5613 35.871 1.7816
10 23.187 1.3466 22.165 1.5389
5 14.652 1.1784 14.145 1.3504
25/9 10.290 1.0690

2 8.5063 1.1761

1 6.2804 .94252 6.3457 1.0927
.8 5.7798 .92401 5.8853 1.0732
.5 5.0001 . 89353 5.1712 1.0412
.25 | 4.3183 .86492 4.5507 1.0117
.05 | 3.7463 .83927 4.0338 .98574
.02 | 3.6581 .83516 3.9545 .98162

0 3.5989 .83238 3.9013 .97883

(b) Opposing flows.

0 3.5989 0.83238 3.9013 0.97883
.02 | 3.5394 . 82956 3.8479 .97602
.05 | 3.4495 .82527 3.7673 .97175
1 3.2980 .81792 3.6318 .96447
.25 3.2152 .94134
.5 1.9852 . 74722 2.4795 .89728
.8 .79060 . 66676 1.4957 .83003
.9 .29531 .62582
.94 .065485 . 60449
.95 .0033788 | .59841

1.0 . 73003 .76816

1.1 .28082 .72610

1.15 .024373 . 69943

1.1544 .00025963 | .69680
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0 < Gr/Re® <0.06  Forced convection (32a)
0.06 < Gr/Re? < 16 Mixed flow (32Db)
16 < Gr/Re? Free convection (32¢c)

These criteria are based on the results for aiding flows. Equation (32a) also applies
to opposing flows, but (32b) is replaced by

0.06 <-Gr/Re2 Mixed flow (324)
As before, no criterion has been obtained for purely free convection flow under oppos-
ing conditions.

The criteria embodied in Equations (31) and (32) were derived using the results
of the uniform wall temperature case, but they also apply rather well to the uniform
heat flux situation.

OTHER SIMITARITY SITUATIONS

Consideration was given to the situation where the free stream velocity of Equa-
tions (1) takes on negative values, i.e., A <0. Physically speaking, this represents
the unusual case of a free stream flow toward the leading edge. For this situation,
the conservation equations can be reduced identically to the ordinary differential
equations (20) and (21), provided only that minus signs be inserted in the brackets
of Equation (17a) determining C; and Cp. The boundary conditions (22) still apply,
except that now F' =+ -2 as 1 . In studying the signs of the various terms of
Equations (20) and (21) for large values of 1, it is found that contradictions occur.
We are thus persuaded that physically reasonable solutions cannot be found for the
negative free stream situation.

It has also be demonstrated that the conservation equations reduce to ordinary
differential equations when U eax’ Tw - T o ebx. Detailed study and numerical
computations, however, have not been carried out.
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